Global unique solvability of 3D MHD equations in a thin periodic domain
نویسندگان
چکیده
منابع مشابه
Global unique solvability of 3D MHD equations in a thin periodic domain
We study magnetohydrodynamic equations for a viscous incompressible resistive fluid in a thin 3D domain. We prove the global existence and uniqueness of solutions corresponding to a large set of initial data from Sobolev type space of the order 1/2 and forcing terms from L2 type space. We also show that the solutions constructed become smoother for positive time and prove the global existence o...
متن کاملSolvability and the Unique Solvability of a Periodic Type Boundary Value Problem for First Order Scalar Functional Differential Equations
Nonimprovable in a certain sense, sufficient conditions for the solvability and unique solvability of the problem u′(t) = F (u)(t), u(a)− λu(b) = h(u) are established, where F : C([a, b];R) → L([a, b];R) is a continuous operator satisfying the Carathéodory condition, h : C([a, b];R) → R is a continuous functional, and λ ∈ R+. 2000 Mathematics Subject Classification: 34K10.
متن کاملA note on unique solvability of the absolute value equation
It is proved that applying sufficient regularity conditions to the interval matrix $[A-|B|,A + |B|]$, we can create a new unique solvability condition for the absolute value equation $Ax + B|x|=b$, since regularity of interval matrices implies unique solvability of their corresponding absolute value equation. This condition is formulated in terms of positive deniteness of a certain point matrix...
متن کاملGlobal Unique Solvability of Inhomogeneous Navier-stokes Equations with Bounded Density
In this paper, we prove the global existence and uniqueness of solution to d-dimensional (for d = 2, 3) incompressible inhomogeneous Navier-Stokes equations with initial density being bounded from above and below by some positive constants, and with initial velocity u0 ∈ H (R) for s > 0 in 2-D, or u0 ∈ H (R) satisfying ‖u0‖L2‖∇u0‖L2 being sufficiently small in 3-D. This in particular improves t...
متن کاملGlobal well-posedness for the 3D incompressible inhomogeneous Navier-Stokes equations and MHD equations
The present paper is dedicated to the global well-posedness for the 3D inhomogeneous incompressible Navier-Stokes equations, in critical Besov spaces without smallness assumption on the variation of the density. We aim at extending the work by Abidi, Gui and Zhang (Arch. Ration. Mech. Anal. 204 (1):189–230, 2012, and J. Math. Pures Appl. 100 (1):166–203, 2013) to a more lower regularity index a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 2008
ISSN: 0022-247X
DOI: 10.1016/j.jmaa.2008.05.088